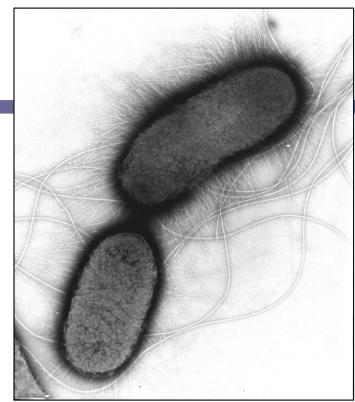


Dr. Angelika Fruth
Robert Koch-Institut
Fachgebiet Bakterielle darmpathogene Erreger und Legionellen
NRZ für Salmonellen und andere bakterielle Enteritiserreger

Fortbildung für den Öffentlichen Gesundheitsdienst, 26.-28. März 2014, BfR, Berlin



XX

Escherichia coli

- Gattung: Enterobacteriaceae,
- gramnegatives Stäbchen
- microaerophil
- peritrich begeißelt
- kann Kapseln und Fimbrien ausprägen
- nichtprofessionell fakultativ intrazellulär in Epithelzellen
- Klassifizierung nach Serovaren (System nach Kauffmann & Orskov)
- Infektionsdosis: z.T. unter 100 Keime
- Inkubationszeit: 1-14 Tage (Langzeitausscheidung möglich)

Reissbrodt, Gelderblom; RKI 2005

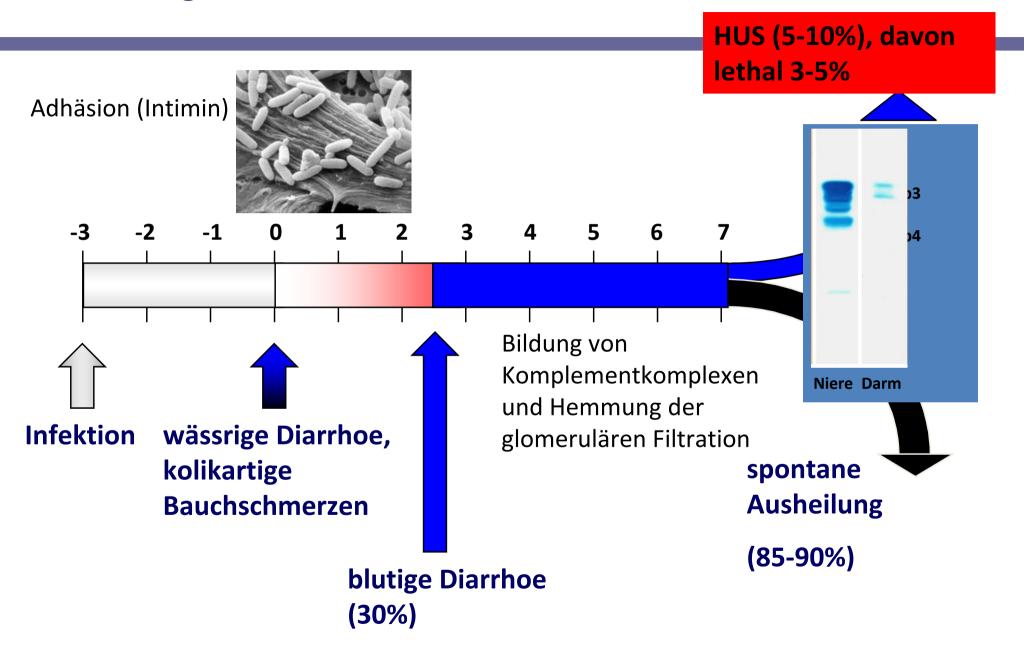
Erkrankungen durch darmpathogene E. coli (IPEC)

Erreger	Klinik	Wirkort
EPEC	wässrige Durchfälle (besonders bei Säuglingen)	Dünndarm
EIEC	Dysenterie mit Tenesmen	Dickdarm
ETEC	Reisediarrhoe, choleraähnliche Durchfälle	Dünndarm
EAEC	wässrige Durchfälle, chronische Darmstö- rungen, Reisediarrhoe	Dünndarm
EHEC	wässrige, blutige Durchfälle bis zur hämorrhagischen Kolitis – Komplikation HUS (Hämolyse, Nierenversagen, Thrombopenie)	Dickdarm

Statistik meldepflichtiger Infektionen des GI-Trakts nach IfSG

(Quelle: SurvStat, 2013)

Erreger	Fälle		
Campylobacter	63.195 ↑		
Salmonellen	18.828 ↓		
S. Typhi / S. Paratyphi	90 / 56 ↑		
EHEC (HUS) / E. coli, sonstige darmpathogene Stämme	1.609 (76) / 7.748 ↑		
Yersinien	2.563 ↓		
Shigellen	577 ↑		
Norovirus	88.702 ↓		
Rotavirus	48.133 ^{\(\psi\)}		
Giardia lamblia	4.122 [↓]		
Kryptosporidium	1.561		

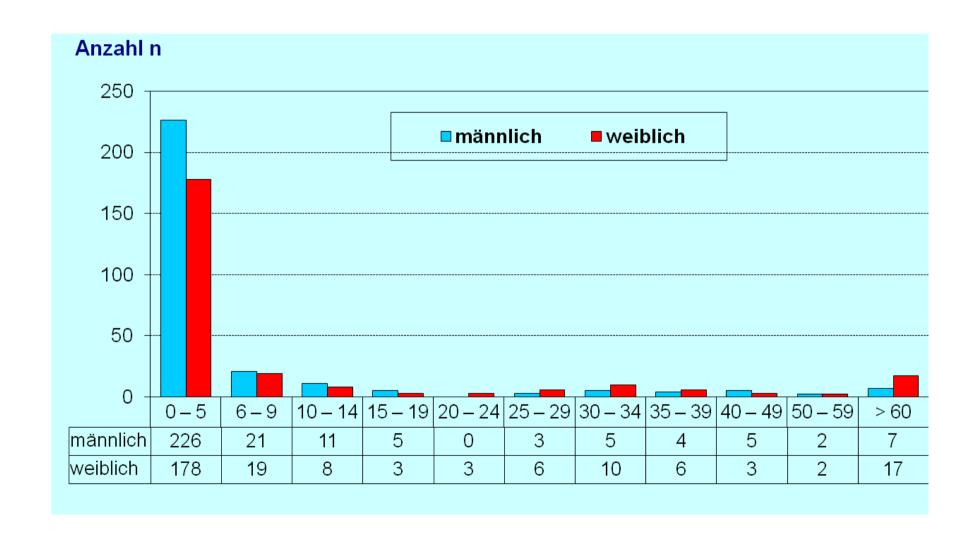


EHEC / STEC / VTEC

- = <u>E</u>ntero<u>h</u>ämorragische /<u>S</u>higa<u>t</u>oxin bildende/<u>V</u>ero<u>t</u>oxin bildende <u>E</u>scherichia <u>c</u>oli
- 1977 Erstbeschreibung duch Konowalchuk
- 1980er O'Brien (Shiga-like Toxin) und Karmali (Verotoxin)
- USA: "Hamburger disease"
- Haupttyp: Serovar **O157:H7**
 - (Serovarformel: LPS-O-Antigen aus Zellwand und Flagellen-H-Antigen)
- Vielfalt von Serovaren und weiteren Virulenzfaktoren

Erkrankungsverlauf bei Infektion mit EHEC

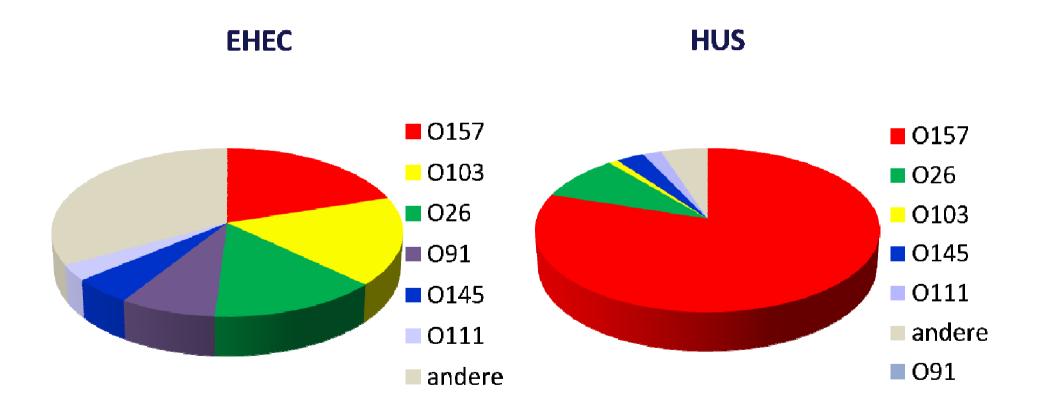
"Attack-Rate"


(nach Scheutz et al., 2011)

Serovar	Shigatoxin	% HUS-Fälle		
O157 (eaeA+)	1a+2a, 2a+2c, 2a, 2c	13		
Non-O157 (eaeA+)	1a+1c, 2a, 2a+2c	8		
Non-O157 (eaeA-)	2d (act)	0,5		
O104:H4 (eaeA-)	2a	22		

Altersverteilung bei Infektion mit EHEC

(Quelle: Daten NRZ 2006)



Serovarverteilung gemeldeter EHEC- und HUS-Fälle in Deutschland, 2001-2008

XX

(Quelle: SurvStat)

43% der EHEC und 64% der HUS-Fälle wurden mit Serogruppe übermittelt.

Seropathovare von EHEC

nach KARMALI 2003 und GYLES 2007

Sero- pathovar	Relative Inzidenz	Assoziation mit Ausbrüchen	Assoziation mit HUS und HC	Serovare
A	hoch	häufig	ja	O157
В	mittel	mäßig	ja	O26, O103, O111, O121, O145
С	niedrig	selten	ja	O45, O91, O104, O113, O165 u.a.
D	niedrig	selten	nein	verschiedene
E*	nicht human	nicht bekannt	nein / ?	verschiedene

^{*} z.B. Shigatoxin-produzierende *E. coli* bei Schweinen EDEC

E. coli, sonstige darmpathogene Stämme (E.-coli-Enteritis)

EPEC

- > "klassische" EPEC (typische EPEC): LEE (Intimin), EAF-Plasmid
- > aEPEC (atypische EPEC): LEE (Intimin)
- > Nachweis von aEPEC auch in Lebensmitteln (Vorstufe von EHEC?)
- > Häufungen beobachtet

ETEC

- > selten Ausstattung mit beiden Toxinformen (ST, LT)
- > wirtsadaptierte Formen (Mensch, Schwein)
- > in D nicht endemisch

EAEC

- > typische EAEC: Virulenzplasmid (kodiert verschiedene Fimbrientypen) und aatA (Dispersin-Transporter), häufig hitzestabiles Enterotoxin bildend (astA)
- > aEAEC (nur aatA-Gen positiv)
- > Mensch als Reservoir
- > in D wenig über Inzidenz und Prävalenz bekannt

EIEC

- > ipaH (Invasion)
- > Verwandtschaft zu Shigellen (Unterscheidung durch automatisierte Identifizierungssysteme eingeschränkt möglich)
- > in D nicht endemisch

Kombination verschiedener Pathovar-bestimmender Virulenzmerkmale ("Mosaikform")

HINSTITUT

Daten NRZ Salmonellen

Pathovar	Virulenzmerkmal	Serovar			
EHEC/EAEC	stx1, stx2, eaeA, ehxA, astA	O157:H-, O26:H11			
STEC/EAEC	stx1, astA	O115:H10			
STEC/EAEC	stx2, astA	O146:H28, O43:H2			
STEC/EAEC	stx1, stx2, ehxA, astA	O91:H-, O113:H4			
EPEC/EAEC	eaeA, astA	O99:H33			
ETEC/EAEC	sth, astA	O25:H-			

Die Klassifizierung der Mosaikformen sollte immer nach der patho-physiologisch bedeutendsten Komponente erfolgen. Produziert der Erreger Shigatoxin, so wird er als EHEC bezeichnet (nach IfSG).

Meldepflicht nach IfSG, 2001 (nov. 2013)

Separate Meldekategorien für EHEC und HUS

- •§7,1: EHEC: Direkter oder indirekter Nachweis ("Labormeldepflicht")
- •§ 6(1): enteropathisches HUS: Verdacht, Erkrankung, oder Tod ("Arztmeldepflicht")
- •§6,2(b): ≥ 2 Erkankungen mit epidemischen Zusammenhang (wahrscheinlich / vermutet)

Hämolytisch-urämisches Syndrom (HUS)

(Referenzdefiniton gemäß IfSG-Meldevorschriften für enteropathisches HUS)

Klinik:

2 von 3 Manifestationen

- hämolytische Anämie
- Thrombocytopenie < 150.000 Zellen/mm³
- Nierenversagen (Anurie)
- Komplikation bei EHEC-Infektion
- gehäuftes Auftreten im Alter von 0-5 Jahren
- auch virale (Hantavirus) oder weitere bakterielle (Pseudomonas), sowie genetische (vWF, Faktor H-Mangel) Ursachen bekannt

Diagnostik-Strategien und die Auswirkungen des EHEC 0104:H4 - Ausbruchs

- Ende der 90er Jahre wenige Selektivmedien die auf *E.c.* O157:H7 ausgerichtet waren (z.B. Sorbitol-Maconkey-Agar) und 3 ELISA-Systeme zum Nachweis von Shigatoxin
- 2000 Entwicklung eines Stufenplans zur EHEC-Diagnostik
- 2014 Vielzahl von Verfahren auf Gen- und Proteinebene anwendbar
- Vorteil der molekularen Methoden: neben EHEC auch andere Pathovare durch gezielten Nachweis der Virulenzfaktoren durch Virulenzgen-PCR definierbar
- für die eindeutige Diagnose (und Meldung) ist die Abarbeitung als Stufenplan weiterhin notwendig

Leitmerkmale zur Diagnostik von E. coli

Pathovar	Virulenzfaktor	Zielgen
EHEC / EHEC-LST	Shigatoxin Intimin Enterohämolysin	stx1 und stx2 eaeA ehxA
EPEC / aEPEC	Intimin Virulenzplasmid	eaeA EAF, bfp
EIEC	Invasin/Membranprotein Virulenzplasmid	ipaH ial
ETEC / aETEC	Enterotoxine Kolonisationsfaktoren	Ith, sth cfa
EAEC-I / aEAEC	Virulenzregulator Virulenzplasmid	aggR EAEC-probe, aatA
EAEC-II	Virulenzregulator Virulenzplasmid P-Fimbrien Aerobactin Yersiniabactin	aggR EAEC-probe, aatA pap iucC irp2

Leitmerkmale zur Diagnostik von E. coli

Pathovar	Virulenzfaktor	Zielgen		
DAEC-I	Intimin	eaeA		
	Adhäsin (AIDA-I-Fimbrien)	AIDA		
	Afa-Fimbrien	afaC		
DAEC-II	Afa-Fimbrien	afaC		
	Hämolysin	hlyA		
	Yersiniabactin	irp2		
ExPEC	P-Fimbrien	рар		
	Hämolysin	hlyA		
	Kapsel-Antigen	ksp		
	Yersiniabactin	irp2		
	Aerobactin	iucC		
	S-Fimbrien	sfa		
	Invasionsfaktor	ibeA		

Neue phänotypische und molekulare Testverfahren

- Enzym-Immuno-Assays (EIA/ELISA)
- Lateral Flow-Immuno-Assays (LFIA)
- Latex-Agglutinationstest (LAT) für die Identifikation von Isolaten
- Loop-mediated isothermal amplification (LAMP)
- PCR-ELOSA (Enzyme linked oligosorbent assay)
- RT-PCR
- Genotyping Array
- Luminex-Systemanalyse: xTAG® Gastrointestinal Pathogen Panel

Anwendung moderner (molekularer) Verfahren in der Praxis (flächendeckend, zeitnah)

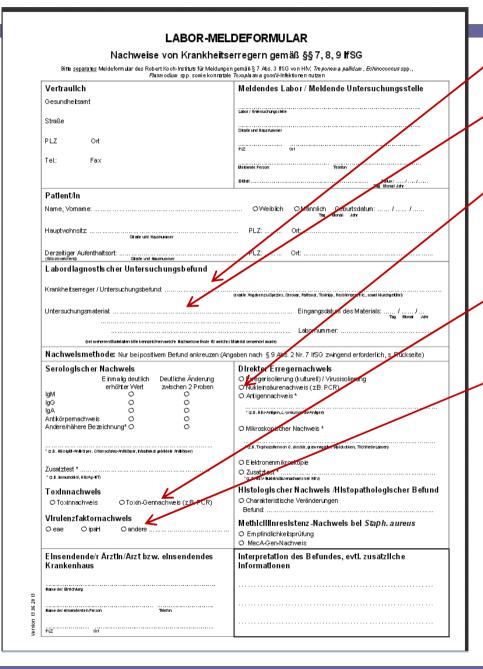
Diagnose schnell und effizient vs.

Epidemiologische Analysen

Meldung und Feindifferenzierung eines Isolats

Entscheidungshilfe zur Falldefinition

Eingang der Meldung aus einem Labor:


- Was wird gemeldet?
- Mit welchem Verfahren wurde diese Diagnose gestellt?
- ➤ Welches Material wurde für das Verfahren benutzt?
- Wurde der Erreger isoliert und weiterführend charakterisiert?
- Wurde der Erreger zur weiterführenden Untersuchung an ein Speziallabor/NRZ versandt?

"EDWIN" (Erreger, Diagnose, Woraus?, Isolat, NRZ)

Beispiel

Krankheitserreger: EHEC

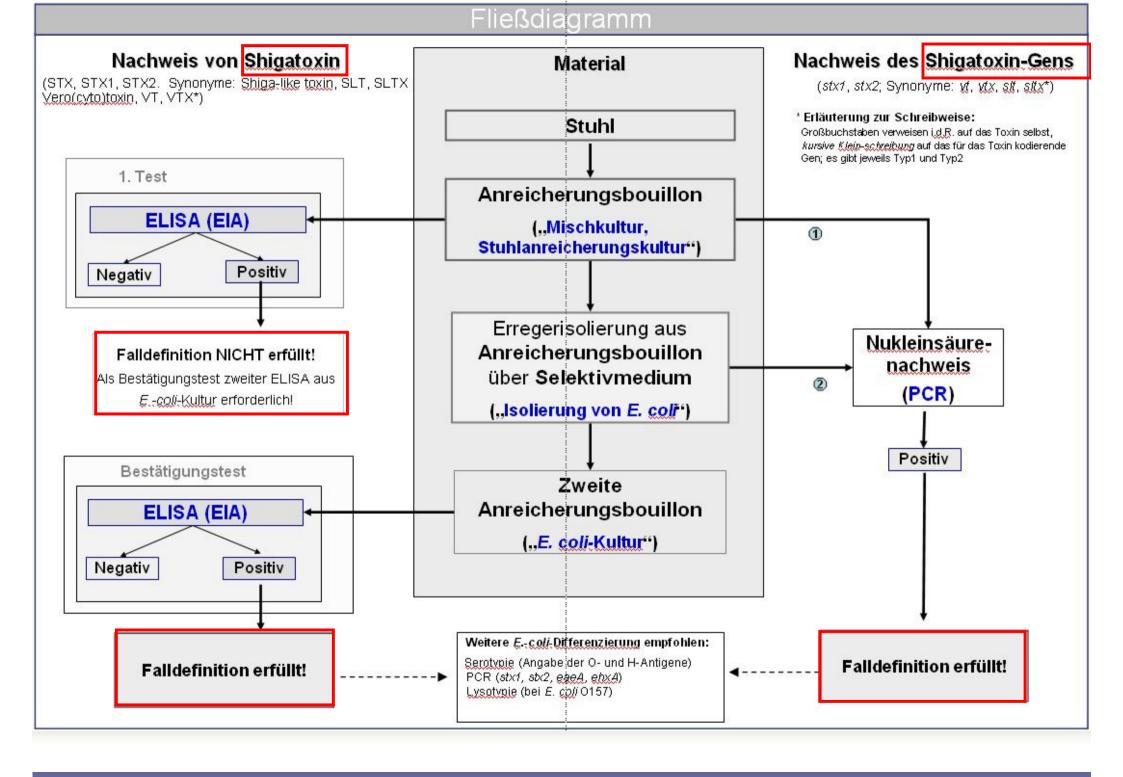
(enterohämorrhagischer E. coli)

<u>Untersuchungsmaterial</u>: Stuhl

(Nach IfSG nur aus Stuhl meldepflichtig, kommt aber selten auch im Urin oder Blut vor!)

Nachweismethode: Nukleinsäurenachweis

(Hier kann ein Erregernachweis <u>ohne</u> Isolierung möglich sein! > Stuhl direkt oder sogen. Anreicherungsbouillon.)


<u>Toxinnachweis</u>: Toxin-Gennachweis (z.B. PCR)

(In der Regel keine Unterscheidung zwischen Shigatoxin 1 und 2)

Virulenzfaktornachweis: eae

(gleichzeitiger Nachweis von stx und eae möglich > kennzeichnend für erhöhtes Risikopotential; andere: z.B. aat)

Hinweise über das Vorliegen des
Erregers als Isolat oder den Serotyp
sollten unter "Direkter
Erregernachweis" eingetragen werden,
fehlen aber häufig!

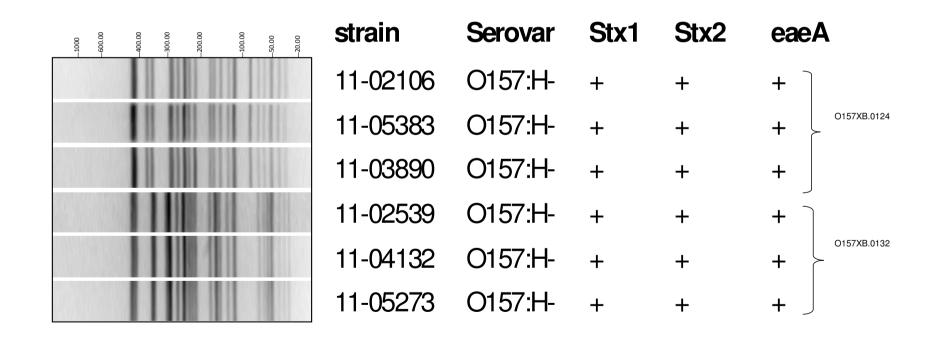
Bewertung der Labormeldung "EHEC"

Meldung als **EHEC**:

- 1. Erreger wurde diagnostiziert durch molekularen Nachweis der Shigatoxin-Gene direkt aus Stuhl (oder aus einer Anreicherung)
- ➢"Toxin-Gennachweis (z.B. PCR)" = stx-Gen positiv + "Nukleinsäurenachweis (z.B. PCR)" = für Escherichia coli spezifische Gene positiv
- ➤ Zusatzinformation: eae posity? Serovar angegeben?
- 2. Erreger wurde indirekt diagnostiziert durch Nachweis des Toxins mittels ELISA (nicht direkt aus Stuhl, sondern über Anreicherungsverfahren)
- ➤ Kann als Meldung akzeptiert werden, wenn ersichtlich ist, dass der Erreger isoliert und von diesem ein weiterer Test mittels ELISA positiv ermittelt wurde oder
- ➤ ELISA und molekulare Verfahren parallel angewandt wurden. ansonsten

EHEC-Verdacht, der einer Bestätigung bedarf!

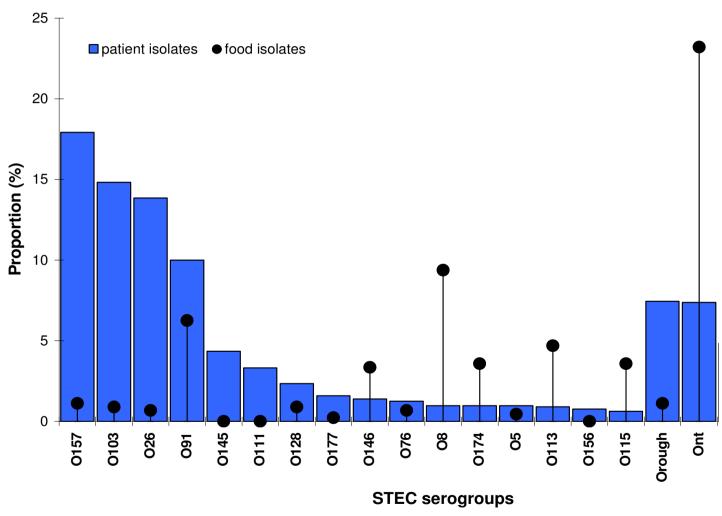
AKTION: Im Labor nachfragen! HUS?



PFGE-Analyse der O157:Hnm – Cluster aus 2011

Quelle: NRZ-Bericht 2012, PulseNet Protocol

PFGE-Xbal


kbp

Grundvoraussetzung: Vergleich identischer Serovare!

Vergleich der EHEC-Isolate von Patienten mit Isolaten aus Lebensmittelkontrollen

Werber, Beutin, Pichner, Stark, Fruth: STEC Serogroups in Food and Patients, Germany. Emerg Infect Dis 2008; 14(11): 1803-6

Molekulare Surveillance von EHEC

Untersuchung auf EHEC gemäß Indikationsliste:

Kinder mit Diarrhoe unter 6 J., Patienten mit blutigen Durchfällen ohne Altersbeschränkung, Vorliegen eines HUS, Häufung von Diarrhoe-Fällen in Gemeinschaftseinrichtungen etc. (MiQ)

mittels zertifizierter Verfahren (EIA, PCR)

Lagerung des

(mind. 14 Tage)

Probenmaterials für

weitere Untersuchungen

bei positivem Nachweis des Shigatoxins / Shigatoxingene

Isolierung des Erregers

Versand des Isolats an Speziallabore mit eindeutigem **Identifikator / Minimum an Epi-Info** (LUA's, KL, NRZ)

Typisierung des Erregers (NRZ, KL):

- mit Phänotypie: Serotypie, biochem. Differenzierung, Resistenztestung
- und molekularen Methoden: Virulenzgenprofil, PFGE, MLST, SLST

Zusammenführung aller Daten und Analyse zur Ausbruchserkennung (zentrale Datenbank am NRZ und Stammsammlung)

Ergänzung der Meldedaten

Netzwerk der Primärdiagnostik-Labore

Meldung an GA

Netzwerk der LUA's

NRZ / KL RKI, Abt. 3 (SurvNet)

Übermittlung relevanter Informationen nach IfSG an Landesstellen und ECDC / TESSy

Bedeutung der weiterführenden Analyse der Erreger

- > Zeitnahe Ausbruchsentdeckung und kontrolle
- Vermeidung von Sekundärübertragungen
 - Häufig (5-15%); bei O157:H-/H7 publiziert
 - Übertragung früh in der Erkrankungsphase
 - Betrifft vor allem (jüngere) Geschwisterkinder
 - Hohes HUS-Risiko
- > Risikobewertung wird ermöglicht
 - z.B. im Zusammenhang mit Therapieempfehlungen, Empfehlungen für Hygienemaßnahmen, Umgang mit Langzeitausscheidern, Wiederzulassung zu Gemeinschaftseinrichtungen etc.
- Erfassung des Spektrums der Virulenzausstattung der Erreger (Sammlung von Stamminformationen)
- Ableitung von Maßnahmen zur **Prophylaxe** (Impfprävention, Intervention in der Lebensmittelproduktion, Erweiterung des Diagnostik-Panels)

Bewertung der Labormeldung anderer E. coli - Pathovare

- ➤ Hierarchie in der Bedeutung, begründet in Pathogenität und Prävalenz: **EHEC**>EPEC>EAEC>ETEC>EIEC
- Diagnostik erfolgt in der Regel nicht molekular, sondern über Serotypie, die nicht mit Virulenzausstattung korrelieren muss
- > Priorität hat die Diagnose für den Patienten/behandelnden Arzt
- Information über Reiseassoziation kann von Bedeutung sein
- gute Therapieoptionen (Langzeitausscheider etc.)
- Wiederzulassung zu Gemeinschaftseinrichtungen etc. analog zum Vorgehen bei enterischen Salmonellen

Serovarverteilung von EPEC, EAEC, ETEC in Deutschland

(Daten NRZ 2010-2013)

Pathovar	Anzahl typisierter Isolate			Anzahl Serovare			Häufigste Serovare		
	2010	2011	2012	2013	2010	2011	2012	2013	
EPEC	135	202	146	103	129	79	76	55	Ont:H- /H33/H49/H4/H19; O128:H2; O127:H45; O145:H34; O55:H7; O103:H2; O49:H-; O51:H49; O76:H7; O88:H25
EAEC	42	9	29	23	28	6	13	19	Ont:H- /H10/H16/H18/H30; O111:H21; O128:H12/H35; O55:H12; O176:H34; O78:Hnt; O86:H30; O33:H-
ETEC	3	4	13	5	3	2	8	4	O3:H2; O25:H-; O128:Hnt; O169:H-; Ont:H-

Resümee

- Die Anwendung molekularer Verfahren in der mikrobiologischen Labordiagnostik ist weit vorangeschritten.
- Aus der Sicht der Meldepflicht für EHEC und andere darmpathogenen *E. coli* resultieren hieraus Labormeldungen, die in ihrer Aussage den Falldefinitionen mitunter nur schwer zuzuordnen sind.
- Durch die Anwendung von Idenfizierungsmethoden aus Rohmaterial fehlen für die weitere Feintypisierung der Erreger zur Surveillance und Ausbruchsanalyse entsprechende Patientenisolate.
- Abhilfe könnte eine Kopplung der Isolatgewinnung und -versendung an die Meldung der Erreger nach IfSG schaffen.
- Für den Aufbau einer umfassenden leistungsstarken molekularen Surveillance der lebensmittelbedingten Erreger stellt der ÖGD eine Schlüsselfunktion dar.
- Der Nutzen einer weiterführenden Analyse liegt in der Erfassung und Überwachung der Erregervielfalt als Basis für Risikoanalysen und der Aufklärung von Ausbrüchen.

Weiterführende Literatur

- M. Kist, A. Ackermann, I. B. Autenrieth, Chr. von Eichel-Streiber, J. Frick, A. Fruth, E. O. Glocker, G., Gorkiewicz, A. von Graevenitz, M. Hornef, H. Karch, E. Kniehl, G. Mauff, A. Mellmann, L. von Müller, T. Pietzcker, R. Reissbrodt, H. Rüssmann, E. Schreier, J. Stein, N. Wüppenhorst: Gastrointestinale Infektionen. MiQ_09_2013: A. Podbielski M., Abele-Horn M., Herrmann E., Kniehl H., Mauch H., Rüssmann (Hrsg.); Urban & Fischer Verlag München
- DGPI-Handbuch, 6. Auflage 2013
- Verordnung zur Neufassung der Verordnung über Sicherheit und Gesundheitsschutz bei Tätigkeiten mit Biologischen Arbeitsstoffen und zur Änderung der Gefahrstoffverordnung (BioStoffV) vom 15. Juli 2013
- W. Kiehl (Hrsg.): Kompendium Infektiologie & Infektionsschutz,
 H. Hoffmann GmbH Verlag, 2009

Identifizierung von EHEC-Erkrankungen durch mikrobiologische Laboratorien in Deutschland

Stufendiagnostik

1. Primärdiagnostik

- Shigatoxin-Produktion oder Nachweis der stx-Gene in einer coliformen bakteriellen Flora (einer Stuhlprobe) aus Anreicherungskultur (mittels Elisa, PCR)
- Nutzung von Indikator-/Selektiv-medien für E. coli z.B. O157:H7 (sorbitol non-fermenting)
- Üblicherweise keine Isolierung (Reinkultur) der Stämme, aber nach Diagnosestellung
 Meldung an die Gesundheitsämter
- ... danach: Weiterleitung der Proben (insbesondere Isolate)!

2. Weiterführende bzw. Spezialdiagnostik

- Spezialisierte Labore (NRZ, KL HUS, LUA's) verarbeiten die Proben (Mischkulturen) aus den Laboren der Primärdiagnostik
- daraus Stammisolierung als Grundvoraussetzung für epidemiologisches Subtypisieren
- Testung von Virulenzgen-Profilen / Genotypisierung (PCR, Sequenzierung)
- Serotypisierung, MLST zur Sequenztypbestimmung (Macro-Evolution)
- PFGE (PT, MLVA) f
 ür Klärung epidemiologischer Zusammenh
 änge (Micro- Evolution)

Danke für Ihre Aufmerksamkeit!

Nationales Referenzzentrum (NRZ) für Salmonellen und andere bakterielle Enteritiserreger Robert Koch-Institut, Bereich Wernigerode Burgstrasse 37 38855 Wernigerode

Tel.: (030) 18754 4206 FAX: (030) 18754 4207