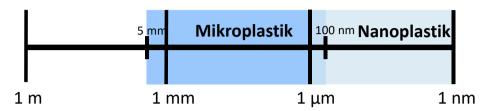
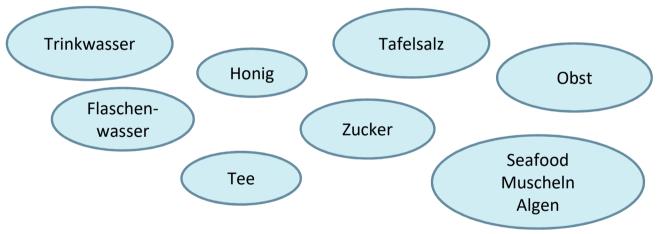


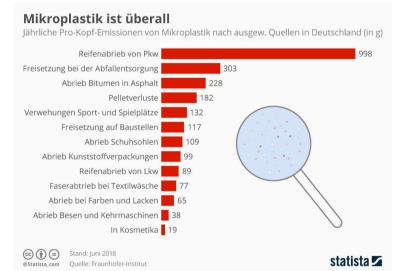
Mikro- und Nanoplastik in Lebensmitteln


19.04.2023, Forum für den Öffentlichen Gesundheitsdienst

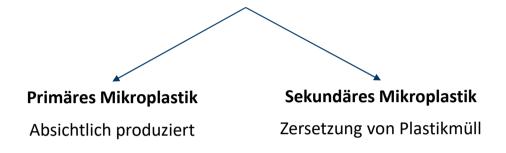
Dr. Holger Sieg

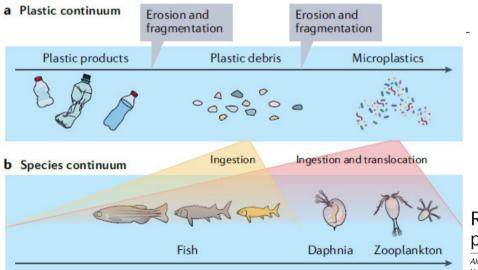

Bundesinstitut für Risikobewertung Fachgruppe "Wirkungsbezogene Analytik und Toxikogenomics", Abteilung Lebensmittelsicherheit

Mikro- und Nanoplastik in Lebensmitteln: Definition und Vorkommen


Kunststoffpartikel < 5 mm

Vorhanden als Kontaminante in zahlreichen Lebensmitteln:



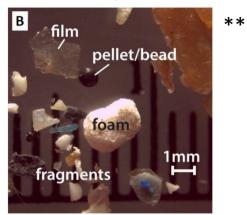

- Verpackungsmaterialien, Verarbeitungsprozesse
- Reifenabrieb, Textilien, Polymerpulver und -granulate, Staub

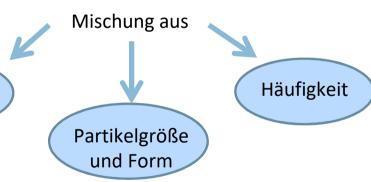
Mikro- und Nanoplastik in Lebensmitteln: Definition und Vorkommen

Risk assessment of microplastic particles

Albert A. Koelmans⊙⊑, Paula E. Redondo-Hasselerharm⊙, Nur Hazimah Mohamed Nor⊙, Vera N. de Ruijter⊙, Svenia M. Mintenia and Merel Kooi⊙

Mikro- und Nanoplastik: Schwierigkeiten bei der Risikobewertung

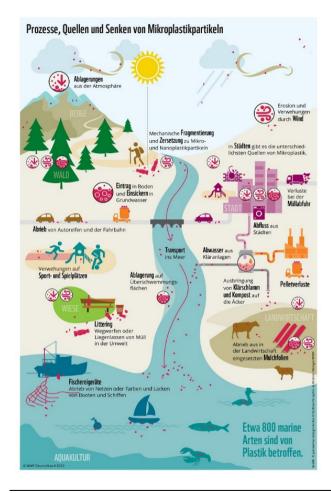

Standardchemikalie


Plastik ist nicht gleich Plastik. Komplexe Risikobewertung

Material

Mikroplastik

- Gefahrenidentifizierung: Chemische Eigenschaften
- Gefahrencharakterisierung: Effekte, Dosis-Wirkungs-Beziehungen
- Expositionsermittlung
- Risikobewertung: Gesundheitsbasierte Grenzwerte (HBGV)



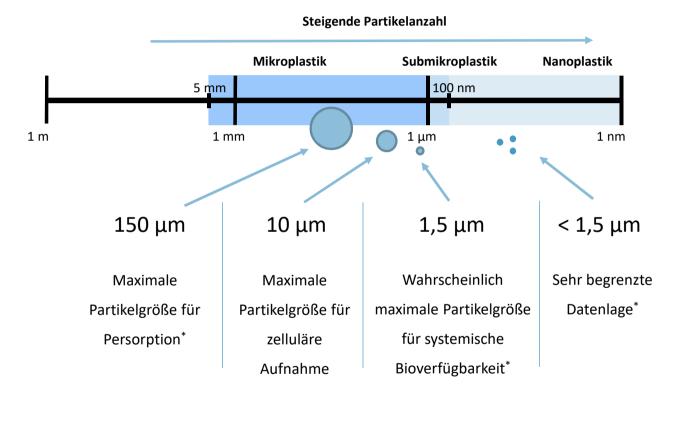
*calroth con

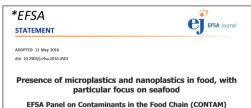
**Baldwin et al. 2016. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology. Environ Sci Technol. 50(19):10377-10385.

Mikro- und Nanoplastik: Schwierigkeiten bei der Risikobewertung

• Differenzierte Betrachtung notwendig:

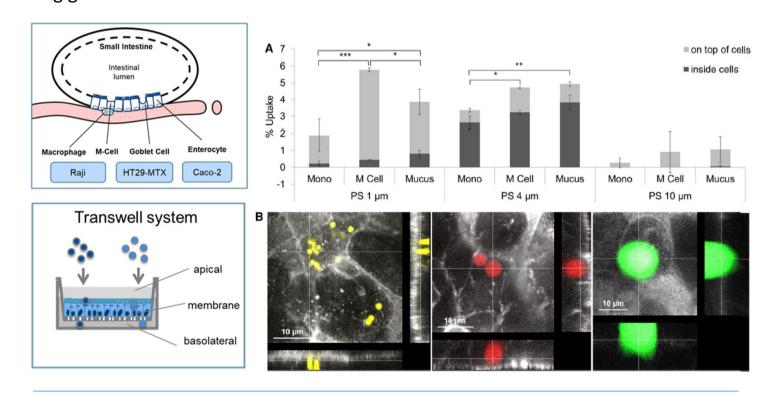
Expositionsroute: Oral
 Dermal
 Inhalativ


Material: Polymer Monomere, Additive,
 Kontaminanten, Biofilme


Größenbereich: Große Partikel

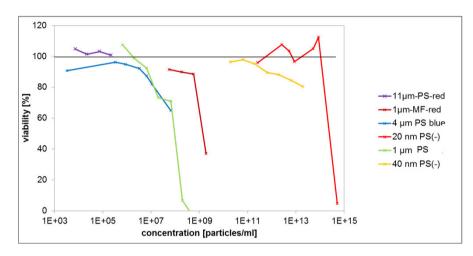
Kleine Partikel

Mikro- und Nanoplastik: Verschiedene Größenbereiche



Mikroplastik: Zelluläre Aufnahme und Bioverfügbarkeit

• Größenabhängige Partikelaufnahme in vitro: Darmzellkulturen



Stock, V.; Böhmert, L.; Lisicki, E.; Block, R.; Cara-Carmona, J.; Pack, L. K.; Selb, R.; Lichtenstein, D.; Voss, L.; Henderson, C. J.; Zabinsky, E.; Sieg, H.; Braeuning, A.; Lampen, A., Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Archives of toxicology 2019, 93 (7), 1817-1833.

Mikroplastik: Gefahrencharakterisierung

• in vitro: Zellviabilitätsmessungen

- Effekte in "Overload"-Situationen
- häufig extrem hohe, unrealistische Konzentrationen
- oft artifizielle Partikel
- Bisher keine konkreten Wirkmechanismen gezeigt

Mikroplastik: Gefahrencharakterisierung

- in vivo: Verschiedene Effekte in unterschiedlichen Spezies
 - Nicht nach OECD-Kriterien
 - Häufig Invertebraten, nicht human
 - Nicht unter kontrollierten Bedingungen
 - Materialbeimischungen oft unklar
 - Größenverteilungen oft nicht berücksichtigt
 - Oft sehr hohe Dosis

- Nicht verwendbar für Risikobewertung
- Noch keine Dosis-Wirkungs-Beziehungen
- Noch keine Gesundheitsbasierten Grenzwerte ableitbar

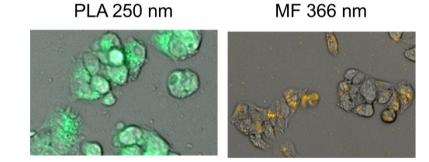
APPROVED: 7 September 2020

Risk assessment and toxicological research on micro- and nanoplastics after oral exposure via food products

German Federal Institute for Risk Assessment (BfR), Department of Food Safety,
Unit Effect-based Analytics and Toxicogenomics Unit and Nanotoxicology Junior Research
Group, Berlin, Germany,
Sofiva Shonova Holars (Sign and Albert Resembra)

Table 3: Selected toxicological effects of micro- and nanoplastics

Toxic effects	Microplastics	Model	Main findings	References
Gastrointestinal toxicity	PE	Blue mussel Mytilus edulis L.	Notable histological change and a strong inflammatory response	von Moos et al. (2012)
	PS	Adult male zebrafish	PS microplastics increased the expression of IL-1 α , IL-1 β and interferon in the gut; indicated microbiota dysbiosis and inflammation	Jin et al. (2018)
	PA, PE, PP, PVC and PS	Zebrafish and nematode	Villi cracking and splitting of enterocytes	Lei et al. (2018)
	PS	Male mice	Accumulation of PS microplastics in mice guts, consequently caused the reduction of intestinal mucus secretion damage of gut barrier function; metabolic disorders in mice	Jin et al. (2019)
	PS	AGS cells	Inflammatory gene expressions such as IL-6 and IL-8	Forte et al. (2016)
Liver toxicity	PS	Zebrafish	Inflammation and lipid accumulation both in 5 µm and 70 nm; oxidative stress and alterations in their metabolic profiles; disturbance of lipid and energy metabolism	Lu et al. (2016)
	PS	Eriocheir sinensis	Decreased activities of AChE, CAT, and ALT in Eriocheir sinensis liver; antioxidants CAT, SOD, GPX and GST level decreased in the liver; expressions of the genes encoding p38 in the MAPK signalling pathway was upregulated while significantly declined in ERK, AKT and MEK	Yu et al. (2018)
Liver toxicity	PS	Mouse	TG and TCH levels decreased; decreases on key gene expressions related to lipogenesis and TG synthesis in liver indicating mouse hepatic lipid disorder	Lu et al. (2018)
	PS	Zebra mussel Dreissena polymorpha	Dopamine concentration increased	Magni et al. (2018)
Neurotoxicity	PS	T98G cells	Increases of ROS, oxidative stress	Schirinzi et a (2017)
Reproductive toxicity	PS	Oysters	Oocyte number, diameter and sperm velocity decreased in oysters	Sussarellu et al. (2016)
	PS	acs-22 mutant Caenorhabditis elegans	Accumulation of nanopolystyrene particles in gonad, dysregulation of some oxidative stress genes	Man et al. (2018)



Von Mikro- zu Nanoplastik: Größenabhängige Aufnahme

PS 10 μm PS 4 μm PS 1 μm

Mikroplastik:

Submikroplastik:

Unterschiede in der zellulären Aufnahme?
Unterschiede in der intrazellulären Lokalisierung?
Unterschiedliche Aufnahmemechanismen?

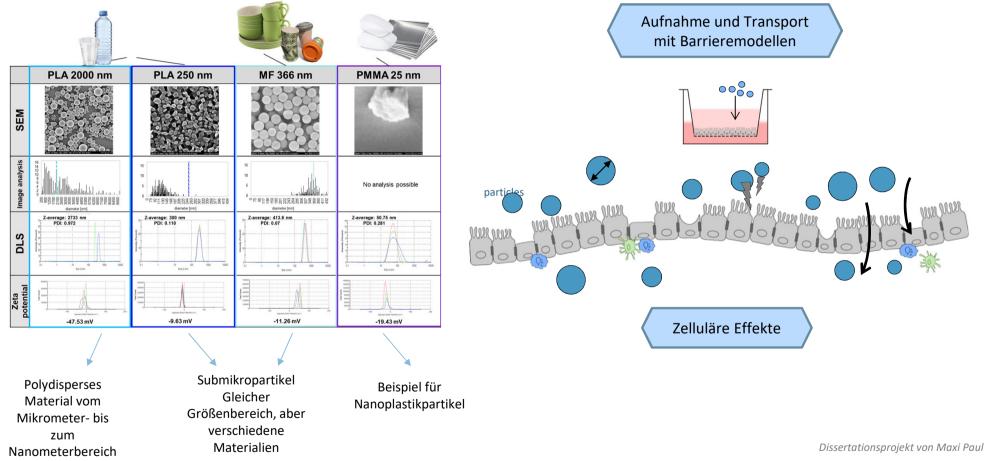
Von Mikro- zu Nanoplastik: Eigene Projekte

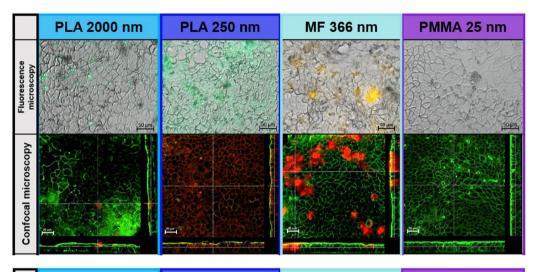
Paul et al. Microplastics and Nanoplastics (2022) 2:16 https://doi.org/10.1186/s43591-022-00036-0 Microplastics and Nanoplastics

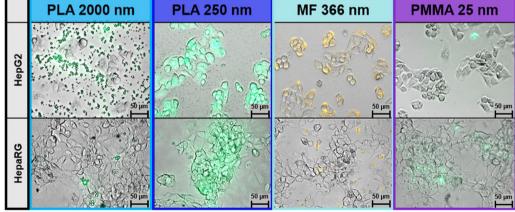
RESEARCH Open Access

Beyond microplastics - investigation on health impacts of submicron and nanoplastic particles after oral uptake *in vitro*

Maxi B. Paul¹, Christoph Fahrenson², Lucas Givelet³, Tim Herrmann¹, Katrin Loeschner³, Linda Böhmert¹, Andreas F. Thünemann⁴, Albert Braeuning¹ and Holger Sieg^{1*}

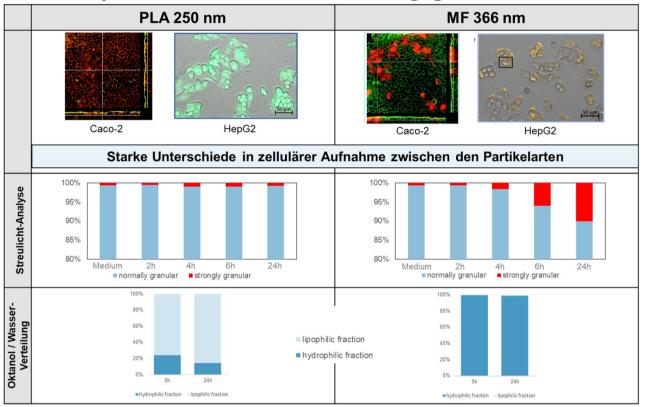



Von Mikro- zu Nanoplastik: Eigene Projekte



Von Mikro- zu Nanoplastik: Aufnahmestudien

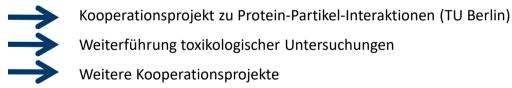
Darmzellen:



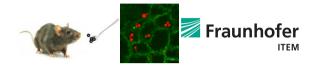
Leberzellen:

Von Mikro- zu Nanoplastik: Materialabhängigkeit

Membraninteraktion?


Endosomale Deposition?

Hypothese: Materialbedingte Unterschiede in der Hydrophobizität bestimmen die Aufnahme



Offene Fragen und Ausblick

- Realistische Exposition gegenüber Submikro- und Nanoplastik:
 - Eintragsquellen und Entstehung? —— Primäres und sekundäres Nanoplastik
 - Vorkommen und Quantifizierung? —— Analytische Verfahren
- In vivo-Relevanz:
 - Lassen sich die Effekte in vivo bestätigen?
 - Orale Bioverfügbarkeitsstudie an Ratten (Fraunhofer ITEM)
- Weitere Projekte:
 - Unterscheiden sich Mikro- und Nanoplastikpartikel in ihren Wirkmechanismen?

Projekt zur öffentlichen Wahrnehmung von Mikroplastik

Dr. Paula Janssen, Dr. Gustav Bruer

Prof. Sascha Rohn, Dr. Helena Kieserling

Prof. Andreas Thünemann, Dr. I-Lun Hsiao, Dr. Katrin Löschner

Danke für Ihre Aufmerksamkeit

Dr. Holger Sieg +49 30 18412-25102 holger.sieg@bfr.bund.de

Bundesinstitut für Risikobewertung www.bfr.bund.de

BfR | Identify Risks – Protect Health

Danksagung:

Maxi Paul
Dr. Valerie Stock
Dr. Linda Böhmert
Marén Schlief
Prof. Dr. Albert Braeuning
Prof. Dr. Tanja Schwerdtle