Die Haut als Barriere für Nanopartikel Das NANODERM Projekt

Tilman Butz Universität Leipzig

Nanotechnologie, ihre Produkte und Risiken für den Verbraucher Expertengespräch im Bundesinstitut für Risikobewertung Berlin, 28. März 2006

The NANODERM Consortium

Country	P.No.	Participant	Short Name	Skills	Resp	Involved in
D	1a	Butz	Uni Leipzig	Ion Microscopy, Radiotracers	1	12358
	Sub	Pallon	Lund	Ion Microscopy		
D	1 b	Sticherling	Uni Leipzig	Biopsies, tissue	6	2568
	Sub	van Vaeck	Antwerpen	LMMS, S-SIMS		
F	2	Surlève-Baz.	UBX1/FDRC	Electron Microscopy	8	2 4 8
	Sub	UBX I/II				
Н	3	Hunyadi	UD-MHSC	Biopsies, cells	7	23678
	Sub	Kiss	Debrecen	WP 7 / Microprobe		
Р	4	Pinhero	ITN	Biopsies, tissue	2	2368
PI	5	Z. Stachura	IFJ	Cyclotron, Ion Microscopy	5	12358
	Sub	Budzanowska	Krakow	Biopsies		12000
DI		1 Ctooburn	Uni Krokov	Electron Microscopy	<u> </u>	1.0
PI	6	J. Stachura	Uni Krakow	Electron Microscopy	4	4 8
F	7	Morotto	LIDV1/CENDC	Jon Microscopy	2	2 0
	7	Moretto	UBX I/CENBG	Ion Microscopy	3	3 8

Tape stripping; quantitative

This is a "horizontal" technique

advantages:

easy and cheap

disadvantages:

does not yield quantitative penetration profiles due to furrows and hair follicles

Confocal Laser Scanning Microscopy
 This can be a "horizontal" technique on explants and a "vertical" technique on cross-sections

advantages:

yields "3D"-info with "thick" sections and thus reduces preparation artifacts

disadvantages:

needs fluorophors; bleaching problems

HRTEM

- a "vertical" method using ultra-thin cross-sections advantages:
- visualize individual particles
- get chemical composition of individual particles
- disadvantages:
- limited field of view (representative?)
- many preparation steps (artifacts?)

Ion beam techniques: PIXE, RBS, STIM: "vertical techniques"

PIXE: particle induced X-ray emission yields elemental maps

RBS: Rutherford backscattering spectrometry and

STIM: scanning transmission ion microscopy yield density

advantages:

large field of view

easy preparation

check for preparation artifacts

disadvantages:

cannot visualize individual particles

• Radio-labelling with ^{48}V (positron emitter, $T_{1/2} = 16d$)

This is a "vertical" method using thin cross-sections and nuclear microemulsions

advantages:

ultra-sensitive

large field of view

relatively easy preparation

see individual positron tracks

disadvantages:

cannot visualize individual particles

Materials

Nanoparticles:

Thioveil, P25, Eusolex T-2000

primary particle size: about 20 nm, coated (?)

Formulations:

various formulations / gels, various commercial sunscreens

Skin:

porcine skin, mouse pads, human skin transplanted to SCID-mice, healthy human skin biopsies (age, sex, caucasian, coloured) and explants, psoriatic skin

Action of Nanoparticles

Unprotected skin

Reflection and absorption of UV-radiation

Sun screen with nanoparticles

Pig Skin Biopsies

Campaign	1 st	2 nd	3 rd
Areas of Biopsies	neck & back	inner parts of hind legs	inner parts of hind legs
Pretreatment	ethanol cleaned	native	 native water rinsed ethanol cleaned tape stripped (10x)
Application Times (hours)	8, 24, 48	0.25 – 2.25	0.3 – 2.75

areas of biopsy: inner parts of the hind legs

punch cylinders:
5 mm

TEM of ashed Eucerin Micropigment Lotion 25

Crystalline TiO₂ coated with amorphous silica layer

From:

Future Technologies Vol.54

Industrial application of nanomaterials – chances and risks

W. Luther (ed.)

HRTEM 1

Cross-section through stratum corneum

HRTEM 2

Nanoparticles between sheets of stratum corneum

HRTEM 3

Nanoparticles between sheets of stratum corneum disjunctum

PIXE on Porcine Skin Cross-Section

red: P blue: S green: Ti

Clear delineation of strata without staining:

- Stratum corneum: sulphur rich
- Stratum spinosum: phosphorous rich

Fast transporter: liposome formulation

Fast transporters do not transport nanoparticles

Human Skin on SCID-Mouse

5) M37d1 map $(400 \mu m \times 200 \mu m, 0.40 \mu C)$

In the marked region the Ti MDL is 3ppm
The Ti concentration in this region is below the MDL.

P S Cl K Ca Ti 0,32% 0,74% 0,43% 0,30% 678ppm

Preparation artifacts

Dark spots in optical image are due to detached horny layer particles

Are Microlesions important?

STIM and PIXE images

Anthelios XL 60 F 24h/occlusive

Penetration
through
stratum
corneum can
be associated
with
microlesions

Hair Follicle

red: P green: S

blue: Ti

400 µm x 400 µm

Penetration into vital tissue?

Autoradiography using microemulsions and 48-V labelled TiO₂

Hair follicle

Skin furrow

NIH 3T3 internalize Nanoparticles

(9 nm, Anatase, uncoated)

in-vitro Response to TiO₂ Nanoparticles

	Keratinocytes	Sebocytes	Fibroblasts	Melanocytes	Dendritic cells
[Ca ²⁺] _i Change	No	No	^	No	No
Internalization	No	No	Yes	fast	fast
Viable cell number	±	±	•	±	(♣)
Apoptosis	No	No	^	No	(♠)
Proliferation	V Diff. markers/ cell adhesion molecules V	.	\	-	-

<u>Summary</u>

- normally, penetration is restricted to the stratum corneum disjunctum; sometimes Ti found in s.c. compactum
- occasionally, Ti is detected in the stratum granulosum
- very seldom, Ti is detected in the stratum spinosum
- in most cases, Ti spots in the dermis are identified as contaminations
- fast transporters do not transport nanoparticles
- no significant differences were observed for different formulations nor for different exposure times (no kinetics!)
- to our surprise, the particle shape had no influence
- it appears that TiO₂ particles are mechanically rubbed into the horny layer / hair follicles / furrows without diffusive transport

Questions to be discussed

- Which tests should be conducted establishing exposure potential through skin barriers?
 My personal opinion:
 - never trust a single technique
 - thus far there is very limited exposure to vital tissue, but there are open questions: particles in the 1-2 nm range might behave like small macromolecules and penetrate; transglandular pathway clearence from follicles (+ glands?)
- When is dermal hazard testing necessary?
 My personal opinion:
 - whenever mechanical action / microlesions can occur
 - whenever NPs are transporters for toxic substances