Uncertainty and variability in Bayesian inference for dietary risk: Listeria in RTE fish

Jukka Ranta

International Conference on Uncertainty in Risk Analysis

Risk Assessment Unit,
Laboratories and Research Department
Finnish Food Authority

Listeria in Ready To Eat (RTE) Fish:
 Cold Smoked Salmon \& Salt Cured Salmon, (CSS/SCS).

(1) Concentration data \& growth model
(2) Consumption data
(3) Bayesian inference
(4) Dose-response model
(5) Epidemiologic data: reported cases \& population data, age groups.

(1) Variation between products μ_{0}

 + growth: $\mu_{\mathrm{t}}=\operatorname{growth}\left(\mu_{0}\right), \quad \mathrm{t}$ days
q = prevalence of positive CSS/SCS
~ 22%
https://www.cookipedia.co.uk/recipes_wiki/File:Ikea_Gravadllax.jpg

$\sim N\left(\mu, \sigma^{2}\right)$
43 values,
179 were <LOQ

Logistic growth model

(2) Variation between consumptions: 48h food diaries

- Log-serving sizes ~N($\left.\eta, \delta^{2}\right)$.
- Consumption on a day, given consumption on previous day:

$$
P(\text { yes } \mid \text { yes })=p_{11} . \quad \text { Likewise } p_{00} .
$$

- Consumption on a day: two-state Markov chain stationary probability p_{1}.

Each of the above have uncertain parameters:

- Core population parameters: $\theta=\left(\mathrm{q}, \mu, \sigma^{2}, \eta, \delta^{2}, \mathrm{p}_{00}, \mathrm{p}_{11}\right)$.

(3) Bayesian inference: $P(\theta \mid$ data) uncertainty of population parameters

- Listeria prevalence in CSS/SCS (q)
- Uncertain due to sample size, method accuracy.

- Concentration distribution: $\left(\mu, \sigma^{2}\right)$
- Uncertain due to sample size, and many values <LOQ.

- Serving size distribution: $\left(\eta, \delta^{2}\right)$
- Uncertain due to sample size, stratification by age.

- Consumption frequencies: transition probabilities $\left(p_{00}, p_{11}\right)$
- Uncertain due to rare occasions, stratification by age.

(4) Conditional dose-response probability, given

consumption of contaminated CSS/SCS \& parameter r

- $P($ illness $\mid r, E(d))=1-\exp (-r E(d))$

$$
\{d \sim \operatorname{Poisson}(E(d))\}
$$

- $E(d)=\exp \left(\mu_{t}^{*}+s^{*}\right)=\exp \left(g_{t}\left(\mu_{0}^{*}\right)+s^{*}\right)$
- $\mu_{t}^{*}=$ predicted log-concentration on day $\mathrm{t}, \mu_{t}^{*}=\mathrm{g}_{\mathrm{t}}\left(\mu_{0}^{*}\right)$, predicted initial value μ_{0}^{*}.
- $s^{*}=$ predicted log-consumption amount, if consuming.
- μ_{0}^{*}, s^{*} predicted from the distributions: $\mathrm{f}\left(\mu_{0}^{*} \mid \mu, \sigma^{2}\right), \mathrm{f}\left(s^{*} \mid \eta, \delta^{2}\right)$, conditional on the uncertain $\mu, \sigma^{2}, \eta, \delta^{2}$

(4) Conditional probability to acquire illness, allowing

repeated consumptions

- Probability to start consuming, purchase of CSS/SCS.
- Probability to continue next day, same product.
- Chance of acquiring illness conditionally on 'still at risk' \& exposure on a day.
- Total probability of illness, over several days, allowing repeated use:
$\left(1-p_{1}\right) p_{01} q\left[P_{1}(\mathrm{ill} \mid r, \mu, \sigma, \eta, \delta)+\sum_{t=2}^{7} \prod_{i=1}^{t-1}\left(1-P_{i}(\mathrm{ill} \mid r, \mu, \sigma, \eta, \delta)\right) p_{11}^{t-1} P_{t}(\mathrm{ill} \mid r, \mu, \sigma, \eta, \delta)\right]$
- (Age group specific).

(4) Population illness probability (risk), individual variability integrated

- Accounting for individual variability in μ_{t}^{*}, s^{*} requires integration:
- $P_{t}($ illness $\mid r, \mu, \sigma, \eta, \delta)=E\left(P_{t}\left(\right.\right.$ illness $\left.\left.\mid r, g_{t}\left(\mu_{0}^{*}\right), s^{*}\right)\right)=$ $\iint_{-\infty,-\infty}^{\infty, \infty}\left(1-\exp \left(-r \exp \left(g_{t}\left(\mu_{0}^{*}\right)+s^{*}\right)\right)\right) f\left(\mu_{0}^{*} \mid \mu, \sigma\right) f\left(s^{*} \mid \eta, \delta\right) d \mu_{0}^{*} d s^{*}$
- This may have no analytic solution, but a Monte Carlo approximation:
- $\hat{P}_{t}($ illness $\mid r, \mu, \sigma, \eta, \delta) \approx \sum_{k=1}^{K}\left(1-\exp \left(-r \exp \left(g_{t}\left(\mu_{0}^{* k}\right)+s^{* k}\right)\right)\right) / K$ where $\mu_{0}^{* k}, s^{* k}$ are sampled from $f\left(\mu_{0}^{*} \mid \mu, \sigma\right)$ and $f\left(s^{*} \mid \eta, \delta\right)$.

- Unknown dose-response parameter \mathbf{r} for specific age groups.
- Uncertain due to lack of detailed epidemiological data, stratification by age.
- Using the reported cases as epidemiological data in the model.
- Proportion of cases due to CSS/SCS? $0 \leq$ cases $_{\text {age }} \leq$ total $_{\text {age }}$.
- Could use source attribution modelling, expert opinion, scenario assumption.
- Reported cases around $\mathbf{1 2}$ in both 65-74 and 25-64 year olds, annually.
- Population sizes about 470,000 vs 2,900,000.
- So we know something about incidence. \rightarrow Use this in the model.
- Actually, published estimates of r rely on some back-calculations, or 'adjusting' predictions with reported incidence.

(5) Full model Bayesian inference

- Full posterior density from the model, all parameters r, θ, formally:
$P(r, \theta \mid$ concentration \& consumption data, cases, popula) \propto
$\hat{P}($ cases $\mid r, \theta$, popula) $P($ concentration \& consumption data $\mid \theta) P(r, \theta)$
- Where \hat{P} (cases $\mid r, \theta$, popula) $=$ Poisson() is based on Monte Carlo approximation of the population risk within each MCMC iteration.
- Intractable likelihood function.
- Also denoted "2D" Monte Carlo, or MC within MCMC.
- Increases computational burden.

Unquantified uncertainty

- Growth model with fixed parameters?
- No home storage data.
- Assumed temperatures as scenarios.
- Unevenly distributed, clustered microbes, mixing?
- No data.
- Variable susceptibility among consumers?
- Can only relate exposure and incidence data by main age-groups.
- Unknown size of purchased packages?
- Total number of servings?
- Majority of consumptions were at home, but not all.
- Not all cases due to CSS/SCS, although major risk. Source attribution, under reporting.

Quantify as much uncertainty \& variability as you can!

(while keeping it simple, feasible, evidence based...)

- This was easy \rightarrow
- This was possible \rightarrow

ш E m \exists
ヨш Е \quad т \quad m

- It gets harder here \rightarrow

\leftarrow but some of these could still be important.

RUOKAVIRASTO
 Livsmedelsverket Finnish Food Authority
 Thank you!

Jukka Ranta

Jukka.Ranta@foodauthority.fi

