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Listeria in Ready To Eat (RTE) Fish: 
Cold Smoked Salmon & Salt Cured Salmon, (CSS/SCS).

(1) Concentration data & growth model

(2) Consumption data 

(3) Bayesian inference

(4) Dose-response model

(5) Epidemiologic data: reported cases & population data, age groups.
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(2) Variation between consumptions: 
48h food diaries

• Log-serving sizes ~ N(h,d2).

• Consumption on a day, given consumption on previous day: 

P(yes|yes)=p11.   Likewise p00. 

• Consumption on a day: two-state Markov chain stationary probability p1.

Each of the above have uncertain parameters: 

• Core population parameters: q = (q,m,s2,h,d2,p00,p11).



(3) Bayesian inference: P(q|data)
uncertainty of population parameters
• Listeria prevalence in CSS/SCS   (q)

• Uncertain due to sample size, method accuracy.

• Concentration distribution:  (m,s2)
• Uncertain due to sample size, and many values <LOQ.

• Serving size distribution: (h,d2)
• Uncertain due to sample size, stratification by age.

• Consumption frequencies: transition probabilities (p00, p11)
• Uncertain due to rare occasions, stratification by age.
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• 𝑃 illness | 𝒓, 𝐸(𝑑) = 1 − exp −𝒓𝐸 𝑑 {𝑑 ~ Poisson 𝐸 𝑑 }

• 𝐸 𝑑 = exp 𝜇𝑡
∗ +𝑠∗ = exp 𝑔𝑡(𝜇0

∗) +𝑠∗

• 𝜇𝑡
∗ = predicted log-concentration on day t, 𝜇𝑡

∗=gt(𝜇0
∗),                                               

predicted initial value 𝜇0
∗ .

• 𝑠∗ = predicted log-consumption amount, if consuming.

• 𝜇0
∗ , 𝑠∗ predicted from the distributions: f(𝜇0

∗|m,s2), f(𝑠∗|h,d2), 

conditional on the uncertain m,s2,h,d2 

(4) Conditional dose-response probability, given

consumption of contaminated CSS/SCS & parameter r



• Probability to start consuming, purchase of CSS/SCS. 

• Probability to continue next day,  same product.

• Chance of acquiring illness conditionally on ’still at risk’ & exposure on a day. 

• Total probability of illness, over several days, allowing repeated use:

𝑃 illness |𝑟, 𝜃 =

1 − 𝑝1 𝑝01𝑞 𝑃1 ill 𝑟, 𝜇, 𝜎, 𝜂, 𝛿 +  𝑡=2
7  𝑖=1

𝑡−1 1 − 𝑃𝑖(ill|𝑟, 𝜇, 𝜎, 𝜂, 𝛿) 𝑝11
𝑡−1 𝑃𝑡(ill|𝑟, 𝜇, 𝜎, 𝜂, 𝛿)

• (Age group specific).

(4) Conditional probability to acquire illness, allowing

repeated consumptions



• Accounting for individual variability in 𝜇𝑡
∗, 𝑠∗ requires integration:

• 𝑃𝑡 illness 𝑟, 𝜇, 𝜎, 𝜂, 𝛿) = 𝐸(𝑃𝑡 illness 𝑟, 𝑔𝑡 𝜇0
∗ , 𝑠∗)) =

 
−∞,−∞

∞,∞
(1 − exp(−𝑟 exp(𝑔𝑡 𝜇0

∗ + 𝑠∗))) 𝑓(𝜇0
∗ |𝜇, 𝜎)𝑓(𝑠∗ |𝜂, 𝛿)d𝜇0

∗d𝑠∗

• This may have no analytic solution, but a Monte Carlo approximation:

•  𝑃𝑡 illness 𝑟, 𝜇, 𝜎, 𝜂, 𝛿 ≈  𝑘=1
𝐾 (1 − exp(−𝑟 exp(𝑔𝑡 𝜇0

∗𝑘 + 𝑠∗𝑘)))/K

where 𝜇0
∗𝑘 , 𝑠∗𝑘 are sampled from 𝑓(𝜇0

∗ |𝜇, 𝜎) and 𝑓(𝑠∗ |𝜂, 𝛿). 

(4) Population illness probability (risk), individual

variability integrated



(5) Epidemiologic data

• Unknown dose-response parameter r for specific age groups.
• Uncertain due to lack of detailed epidemiological data, stratification by age.

• Using the reported cases as epidemiological data in the model.
• Proportion of cases due to CSS/SCS?    0 ≤ casesage ≤ totalage. 

• Could use source attribution modelling, expert opinion, scenario assumption.  
• Reported cases around 12 in both 65-74 and 25-64 year olds, annually. 

• Population sizes about 470,000 vs 2,900,000.

• So we know something about incidence.   Use this in the model. 

• Actually, published estimates of r rely on some back-calculations, or
’adjusting’ predictions with reported incidence. 
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(5) Full model Bayesian inference
• Full posterior density from the model, all parameters 𝑟, 𝜃, formally:

𝑃 𝑟, 𝜃 concentration & consumption data, cases, popula) ∝

 𝑃 cases 𝑟, 𝜃, popula 𝑃 concentration & consumption data 𝜃 𝑃(𝑟, 𝜃)

• Where  𝑃 cases 𝑟, 𝜃, popula =Poisson() is based on                                             
Monte Carlo approximation of the population risk
within each MCMC iteration. 

• Intractable likelihood function.

• Also denoted ”2D” Monte Carlo, or MC within MCMC. 

• Increases computational burden.

Uncertain
distributions



Unquantified uncertainty
• Growth model with fixed parameters?

• No home storage data. 

• Assumed temperatures as scenarios. 

• Unevenly distributed, clustered microbes, mixing?

• No data.

• Variable susceptibility among consumers?

• Can only relate exposure and incidence data by main age-groups. 

• Unknown size of purchased packages? 

• Total number of servings?

• Majority of consumptions were at home, but not all. 

• Not all cases due to CSS/SCS, although major risk. Source attribution, under reporting.



Quantify as much uncertainty & variability as you can!
(while keeping it simple, feasible, evidence based…)

• This was easy 

• This was possible 

• It gets harder here 

• …  …Uhhhh   but some of these could still be important.
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Thank you!
Jukka Ranta

Jukka.Ranta@foodauthority.fi


