

Uncertainty and variability in Bayesian inference for dietary risk: Listeria in RTE fish

Jukka Ranta

Risk Assessment Unit,

Laboratories and Research Department

Finnish Food Authority

International Conference on Uncertainty in Risk Analysis

BfR, Berlin 20.-22.2.2019

Listeria in Ready To Eat (RTE) Fish: Cold Smoked Salmon & Salt Cured Salmon, (CSS/SCS).

- (1) Concentration data & growth model
- (2) Consumption data
- (3) Bayesian inference
- (4) Dose-response model
- (5) Epidemiologic data: reported cases & population data, age groups.

(1) Variation between products μ_0 + growth: μ_t = growth(μ_0), t days

(2) Variation between consumptions: 48h food diaries

- Log-serving sizes ~ N(η , δ^2).
- Consumption on a day, given consumption on previous day:
 P(yes|yes)=p₁₁. Likewise p₀₀.
- Consumption on a day: two-state Markov chain stationary probability p₁.

Each of the above have uncertain parameters:

• Core population parameters: $\theta = (q, \mu, \sigma^2, \eta, \delta^2, p_{00}, p_{11})$.

(3) Bayesian inference: $P(\theta | data)$ uncertainty of population parameters

- Listeria prevalence in CSS/SCS (q)
 - Uncertain due to sample size, method accuracy.
- Concentration distribution: (μ , σ^2)
 - Uncertain due to sample size, and many values <LOQ.
- Serving size distribution: (η , δ^2)
 - Uncertain due to sample size, stratification by age.
- Consumption frequencies: transition probabilities (p₀₀, p₁₁)
 - Uncertain due to rare occasions, stratification by age.

(4) Conditional dose-response probability, given consumption of contaminated CSS/SCS & parameter r

• $P(\text{illness} | \mathbf{r}, E(d)) = 1 - \exp(-\mathbf{r}E(d))$

$$\{d \sim \text{Poisson}(E(d))\}$$

- $E(d) = \exp(\mu_t^* + s^*) = \exp(q_t(\mu_0^*) + s^*)$
- μ_t^* = predicted log-concentration on day t, $\mu_t^* = g_t(\mu_0^*)$, predicted initial value μ_0^* .
- s^* = predicted log-consumption amount, if consuming.
- μ_0^* , s^* predicted from the distributions: $f(\mu_0^* | \mu, \sigma^2)$, $f(s^* | \eta, \delta^2)$, conditional on the uncertain $\mu, \sigma^2, \eta, \delta^2$

(4) Conditional probability to acquire illness, allowing repeated consumptions

- Probability to start consuming, purchase of CSS/SCS.
- Probability to continue next day, same product.
- Chance of acquiring illness conditionally on 'still at risk' & exposure on a day.
- Total probability of illness, over several days, allowing repeated use: $P(\text{illness} | \mathbf{r}, \theta) =$ $(1 - p_1)p_{01}q[P_1(\text{ill}|\mathbf{r},\mu,\sigma,\eta,\delta) + \sum_{t=2}^7 \prod_{i=1}^{t-1} (1 - P_i(\text{ill}|\mathbf{r},\mu,\sigma,\eta,\delta))p_{11}^{t-1}P_t(\text{ill}|\mathbf{r},\mu,\sigma,\eta,\delta)]$
 - 25

• (Age group specific).

(4) Population illness probability (risk), individual variability integrated

- Accounting for individual variability in μ_t^* , s^* requires integration:
- $P_t(\text{illness } | \mathbf{r}, \mu, \sigma, \eta, \delta) = E(P_t(\text{illness } | \mathbf{r}, g_t(\mu_0^*), s^*)) =$ $\iint_{-\infty, -\infty}^{\infty, \infty} (1 - \exp(-\mathbf{r} \exp(g_t(\mu_0^*) + s^*))) f(\mu_0^* | \mu, \sigma) f(s^* | \eta, \delta) d\mu_0^* ds^*$
- This may have no analytic solution, but a Monte Carlo approximation:
- $\hat{P}_t(\text{illness} | \mathbf{r}, \mu, \sigma, \eta, \delta) \approx \sum_{k=1}^{K} (1 \exp(-\mathbf{r} \exp(g_t(\mu_0^{*k}) + s^{*k})))/K$ where μ_0^{*k}, s^{*k} are sampled from $f(\mu_0^* | \mu, \sigma)$ and $f(s^* | \eta, \delta)$.

(5) Epidemiologic data

- Unknown dose-response parameter **r** for specific age groups.
 - Uncertain due to lack of detailed epidemiological data, stratification by age.
- Using the reported cases as epidemiological data in the model.
 - Proportion of cases due to CSS/SCS? $0 \le \text{cases}_{age} \le \text{total}_{age}$.
 - Could use source attribution modelling, expert opinion, scenario assumption.
 - Reported cases around **12** in both 65-74 and 25-64 year olds, annually.
 - Population sizes about **470,000** vs **2,900,000**.
 - So we know *something* about incidence. \rightarrow Use this in the model.
 - Actually, published estimates of r rely on some back-calculations, or 'adjusting' predictions with reported incidence.

(5) Full model Bayesian inference

• Full posterior density from the model, all parameters r, θ , formally:

 $P(r, \theta | \text{concentration & consumption data, cases, popula}) \propto \hat{P}(\text{cases} | r, \theta, \text{popula}) P(\text{concentration & consumption data} | \theta) P(r, \theta)$

- Where $\hat{P}(cases|r, \theta, popula)=Poisson()$ is based on Monte Carlo approximation of the population risk within each MCMC iteration.
 - Intractable likelihood function.
 - Also denoted "2D" Monte Carlo, or MC within MCMC.
 - Increases computational burden.

Unquantified uncertainty

- Growth model with fixed parameters?
 - No home storage data.
 - Assumed temperatures as scenarios.
- Unevenly distributed, clustered microbes, mixing?
 - No data.
- Variable susceptibility among consumers?
 - Can only relate exposure and incidence data by main age-groups.
- Unknown size of purchased packages?
 - Total number of servings?
- Majority of consumptions were at home, but not all.
- Not all cases due to CSS/SCS, although major risk. Source attribution, under reporting.

Quantify as much uncertainty & variability as you can!

(while keeping it simple, feasible, evidence based...)

• This was easy \rightarrow

- This was possible \rightarrow
- It gets harder here \rightarrow
- Uhhhh \rightarrow

← but some of these *could still be* important.

Thank you!

Jukka Ranta

Jukka.Ranta@foodauthority.fi