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What is radioecology?
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“Radioecology is a highly multidisciplinary scientific discipline 
situated at the crossroads between environmental 
radioactivity, whether natural or man-made, and its 
consequences on both, man and the environment. It deals with 
radioactivity as a stressor requiring risk assessment, but also as 
a tracer of biogeochemical and ecological processes. ” 

http://www.iur-uir.org/en/

Radioecological models are needed for
• Prognostic assessments (e.g. regulatory purposes)
• Assessments for radioecological emergency preparedness and 

response
• Low activity levels in the environment (e.g. measurements not 

feasible)
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Conceptual model uncertainty

• Definition
• Deals with simplifications needed to translate a 

conceptual model into mathematics (EPA, 2009; EPA, 
2014)

• Refers to incomplete understanding and simplified 
representations of modelled processes as compared to 
reality (Refsgaard et al., 2007)

Neglecting conceptual model uncertainty may lead to 
uncertainty bands that are not sufficiently wide 
(Engeland, 2005) 
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Quantification of conceptual model 
uncertainty

Given a model and available experimental data several strategies 
are possible (Refsgaard et al., 2006):

1. Use a split-sample approach for calibrating and validating 
the model and increase the range of parameter uncertainty 
to implicitly account for conceptual model uncertainty. 

2. Estimate the total uncertainty of the model output with 
statistical analysis of the residuals and subtract the 
parameter uncertainty from total uncertainty.

3. Carry out a process-sensitivity analysis. 
4. Use advanced statistical tools such as Multi-model 

inference, Bayesian Model Averaging and Generalised
Likelihood Uncertainty Estimation.
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Conceptual model uncertainty in 
radioecology

Conceptual model uncertainty is present (examples):
• When using simplifying empirical parameters, e.g. transfer 

factor soil-plant, soil-mushroom, soil-cow milk etc.

• When deliberately excluding relevant processes. 

• When assuming that the system is in an equilibrium state 
whereas this is not the case (dynamic process).

• When the source term is oversimplified, e.g. hot particles are 
neglected.
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Conceptual model uncertainty in 
radioecology

Conceptual model uncertainty is present (examples):
• When using simplifying empirical parameters, e.g. transfer 

factor soil-plant, soil-mushroom, soil-cow milk etc.

• When excluding relevant processes e.g. resuspension.

• When assuming that the system is in an equilibrium state 
whereas this is not the case (dynamic process).

• When the source term is oversimplified, e.g. hot particles are 
neglected.
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Example 1: Wild boar contamination with 
radiocaesium

Sampling date
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Wild boar contamination with 
radiocaesium
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Tagg (m2 kg-1)

Simplified model:
Contamination of wild boar meat is
proportional to soil contamination
(aggregated transfer factor model)
 Stochastic uptake of highly
contaminated food items is not
considered!

𝐶𝑤𝑏𝑜𝑎𝑟 = 𝑇𝑎𝑔𝑔 ⋅ 𝐶𝑠𝑜𝑖𝑙
Soil inventory Csoil (Bq m-2)
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Process-based model for wild boar 
contamination
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Process-based model: Stochastic uptake of highly contaminated food items is considered.
Model gives a probability distribution for the radiocaesium contamination of wild boars

Hartmann et al., IRPA 2017 Conference
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Example 2: Interception of wet deposited 
radionuclides by vegetation
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𝑓𝐵 𝐻, 𝐼, 𝐸, 𝐿𝐴𝐼,𝑊,… =
 𝐴𝑝𝑙𝑎𝑛𝑡 𝐴𝑡𝑜𝑡𝑎𝑙

𝐵 Data available from laboratory 
experiments 1970-2014: variety 
of plants, different 
radioactive/inert substances, 
different rainfall conditions.

• H amount of rainfall (mm), I rain intensity, E evaporation rate (mm h-1)
• LAI Leaf area index, W plant water storage (mm) 
• Aplant amount of pollutant retained on plant (e.g. Bq)
• Atotal total amount of pollutant deposited onto soil-plant system (e.g. 

Bq)
• B standing biomass density (kg d.w. m-2)
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Process-based models for interception of 
wet deposited radionuclides
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Gonze and Sy (2016)* developed two process-based models:
1. Equilibrium model (EM): balance between drainage 

and absorption mechanisms depends on total 
capacity to mobilise deposited substances
absorption instantaneous and reversible 

2. Kinetic model (KM): balance between drainage and 
absorption mechanisms depends on kinetic rates of 
these  kinetic and irreversible process

Bayesian approach to quantify parameter uncertainty and carry 
out residual analysis (model performance testing) is used.

* M. -A. Gonze, M. M. Sy (2016) Science of the Total Environment 565, 49-67
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Quantification of conceptual uncertainty 
for EM and KM models

Build upon Gonze and Sy (2016) and deduce from 95% 
confidence interval of model output and 95% confidence 
interval of propagated parameter uncertainty  95% 
confidence interval of conceptual model uncertainty 

In practice: quantify difference between model output with 
propagated parameter uncertainty and residual S and model 
output with propagated parameter uncertainty only.

Main assumptions:
• Contributions to uncertainty are additive.
• Data available are representative.
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Results for iodine
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For I-131 EM and KM model perform 
identically because iodine is a non-
interacting substance.

The difference 
between the 
two pdfs gives a 
measure of the 
conceptual 
model 
uncertainty
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Results for beryllium and strontium
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• 4 data points as example: 
2 Be-7 (top) and 2 for Sr-
85 (bottom).

• For these elements EM 
and KM model perform 
differently.
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Results for caesium
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• One data point available for 
predictions.

• Conceptual uncertainty for 
EM model is larger than for 
KM model.
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Results for polystyrene
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• 4 data points as 
example.

• For these elements 
EM and KM model 
perform differently. 
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Conclusion
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• Considering all the data points conceptual model 
uncertainty is larger for EM model than for KM model. 
However, this depends on the underlying experimental 
data, namely type of element (valence) and 
experimental conditions (e.g. intermittent rain).

• Some variability, e.g. plant type, remains included in the 
residual S.
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Discussion

• Data unavailability and non-representativeness restrict 
the possibility to quantify the conceptual model 
uncertainty.  

• The assumption of uncertainties being additive is often 
used to quantify the various uncertainty contributions. 

• The quantification of propagated parameter uncertainty 
is often a pre-requisite for determining the conceptual 
model uncertainty.

• Other uncertainty sources are neglected (e.g. 
measurement uncertainty) but may play a role.
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Thank you!
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Equilibrium model (EM)
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• p free throughfall coefficient
• Ts saturation time
• Ds drainage rate at saturation 
• LAI single-sided leaf area index (m2 m-2)
• L specific foliage storage (mm)
• CR concentration ratio 
• T exposure time
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Kinetic Model (KM)
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• I rainfall intensity (mm h-1)
• J/K absorption velocity (mm h-1)
• p free throughfall coefficient
• Ts saturation time
• Ds drainage rate at saturation 
• LAI single-sided leaf area index (m2 m-2)
• L specific foliage storage (mm)
• T exposure time
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