Communicating probability with natural frequencies and the equivalent binomial count

Scott Ferson, University of Liverpool, United Kingdom

22 February 2019, Conference on Uncertainty in Risk Analysis

Communicating probability

- Probability density function graphs
- Box and whisker plots
- Cumulative probability function graphs
- Icon arrays
- Spinners, games
- Numerical statistics
- Percentages, odds, natural frequencies

Natural frequencies and icon arrays

$$
37 \text { out of } 100
$$

What if it's more complex than scalar $p \in[0,1]$

-What if it is a distribution?

- What if it is a collection of distributions?
- Second-order distribution
- Robust Bayesian analysis
- Probability box
- Envelop of distributions from disagreeing experts

What is the world's most dangerous animal?

Source:https://www.statista.com/chart/2203/the-worlds-deadliest-animals/
Slide credit: Keith Hayes, et al. 2017

Medelian inheritance versus gene drive

Altered gene Wild type

Altered gene without gene drive: One copy inherited from one parent. 50 percent chance of passing it on.

Altered gene does not spread

Gene drive Wild type

Altered gene as gene drive: One copy converts gene inherited from other parent. More than 50 percent chance of passing it on.

Risk result: HGT to non-target Eukaryotes

FT3

Confidence structure (c-box)

- P-box-shaped estimator of a (fixed) parameter
- Gives confidence interval at any confidence level
- Can be propagated just like p-boxes
- Allows us to compute with confidence

Example: binomial rate p for k of n trials

$$
p \sim \operatorname{env}(\operatorname{beta}(k, n-k+1), \operatorname{beta}(k+1, n-k))
$$

Data
$k=2$ successes
$n=10$ trials

($\alpha-\beta$) 100% confidence interval for p

C-boxes

- Bayesian (specifies a class of priors in the uninformative case)
- But also have frequentist coverage properties
- Don't optimize anything; they perform
- Characterize inputs from limited or even no information

Notice that the c-boxes in
every row partition the vacuous 'dunno' interval

We call the first (or first

 and second) c-box in eachrow the "corner" c-boxes
They correspond to the rare events of concern

Zero out of 10^{k} trials

One out of 10^{k} trials

Fault tree

Fault tree inputs

The blue c-boxes are posteriors for the inputs from a robust Bayes analysis based on the red data

Top event E1

Risk result: HGT to non-target Eukaryotes

FT3

Equivalent binomial count

- An imprecisely computed risk can be expressed as a p-box on $[0,1]$
- Transform it into a natural language expression " k out of n "
- These are natural frequencies
- Ratio k/n implies magnitude of risk
- Large uncertainties imply small denominators
- People can understand them

Match a calculated risk to a c-box

Express risk as "k out of n "

When there is a lot of epistemic uncertainty

- It might be possible to use intervals as numerators k

PPV

The chance the patient is sick

Probability

NPV

The chance the patient is well

Probability

Do people understand?

- We used Amazon Mechanical Turk to check this
- We showed >300 "turkers" several mock sunglasses comparisons
- We checked the turkers' preferences for identical sunglasses rated by other buyers using various schemes
- More frequent 'excellent' ratings should be preferred
- Larger pool of buyers rating should be more reliable

We tested whether

- Turkers can make rational choices
- Natural frequencies are as good as or better than percentages
- Larger denominators convey more reliability
- Interval numerators can be understood

Which product is better?

- Based on the reviews left by previous customers, which product would you buy?
- Use only the customer ratings and the number of stars left by customers to guide your decision.

Pair A was rated excellent by 2 out of 4 customers.

50\% of customers rated Pair B as excellent.

Findings

80%
$10 / 100$
$66 / 198$
$[66,88] / 198$
50%
$2 / 4$

50\% rational
80/100 same sample size
2/6 same magnitude
33/100 even with ambiguity
50/100 prefer natural frequency
50\% unless very uncertain

These are exemplar comparisons from the study with "master turkers"

Conclusions

- People make rational choices when given natural frequencies " k out of n "
- Analysts can translate results into k-out-of- n equivalent binomial counts
- Natural frequencies express probabilities so humans can understand them
- Also embody uncertainty about the risks which humans also care about

Acknowledgments

- Keith Hayes
- Jason O'Rawe
- Michael Balch
- National Institutes of Health

End

