

Forschung zur Zelladhäsion und deren Beeinflussung durch nanostrukturierte Oberflächen

The New World of chemical Nano Technology

by Michael Veith

www.inm-gmbh.de

» Klassifizierung

- Natürlich vorkommende Nanopartikel (Bsp. durch Verbrennungsprozesse)
- Nanomaterialien (In Matrix eingebettete Nanopartikel oder -strukturen)
- Künstlich hergestellte Nanoobjekte (Freie Nanopartikel, Fullerene, CNTs)
- Autonom agierende Nanosysteme (Nanoroboter, aktive Nanostrukturen)

- ⇒ unvermeidbar Konzentration auf andere Bereiche
- ⇒ unkritisch in der Verwendung. Verbleib in der Umwelt?
- ⇒ häufig bioaktiv deutliches Gefährdungspotenzial
- ⇒ uninteressant solange Realisierbarkeit nicht geklärt

Nanomaterialien

» Beispiele

- Photokatalytisch aktive Fensterscheiben (TiO₂-Nanopartikel in transparenter Matrix auf Glas)
- Kratzfestlack (Künstliche Nanopartikel in Suspension)
- » Lebenszyklus
 - Herstellung nasschemisch, geschlossene Prozesstechnik
 - Nutzungsdauer:nicht verbrauchend, kein Austritt gebundener Nanopartikel
 - > Bearbeitung / Entsorgung
 - > Sägen, Bohren, ...
 - > Schleifen
 - > Verbrennung

- ⇒ unkritisch keine Freisetzung beobachtbar
- ⇒ unkritisch keine Freisetzung beobachtbar
- ⇒ Nanopartikel bleiben eingebettet
- ⇒ Forschungsbedarf
- ⇒ Verbrennung erzeugt ohnehin Nanopartikel Forschungsbedarf: Werden auch die eingebetteten frei?

Künstlich hergestellte Nanoobjekte

» Beispiele

- Kohlenstoffnanostrukturen (ein- und mehrwandige Kohlenstoffnanoröhrchen, Fullerene)
- Pyrogene Kieselsäure (Bsp. Degussa Aeorsil)

» Problematik

>>>

- > Aufnahmewege in die Zelle
- > Wirkmechanismen in Zellen und Zellkernen
- Abhängigkeiten von Form und Oberflächenmodifizierung
- > Biologische Effekte ⇔ Nanoeffekte

- \Rightarrow Bisher nicht eindeutig identifiziert
- \Rightarrow Forschungsbedarf
- ⇒ Nur exemplarische Untersuchungen möglich, Modelle erforderlich
- ⇒ Nanoeffekte unter 50 nm Biologische Effekte schon im Sub-µ-Bereich

Silbernanopartikel

» Beispiele

- Mikrobizide Beschichtung von Hörgeräten (Im-Ohr-Hörgerät, Fa. Audio Service GmbH)
- Schwammtücher
 (Vileda Fresh "mit antibakteriellen Silber-Ionen")

» Verbleib des Wirkstoffs

- Partikel eingebunden, nur Abgabe von Silberionen
- > Wachsender Markt → Mengenabschätzung
- > Wirkung auf (biologische) Kläranlagen
- > Klärschlammentsorgung

- \Rightarrow keine Partikelproblematik
- ⇒ Abschätzung von FFD (Freudenberg): Weniger als Eintragsrückgang durch Fotolabore
- ⇒ Vermutlich Komplexierung und Ausfällung durch hohen Gehalt an Salzen im Abwasser
- ⇒ Ausbringung auf Ackerflächen Forschungsbedarf

Christian Petersen Volker Huch Cenk Aktas Hinka Caparotti Eva Sow

Special thanks for cooperation to

- Dr. Metzger, Klinikum Homburg
- Dr. Narz, Quiagen
- Prof. Schäfer, Zweibrücken/Stanford

Physical Landscape

ľ

Chemical Landscape

Joachim Spatz, MPG Stuttgart Nachrichten aus der Chemie, September 2008

"Tastensensitivität biologischer Zellen auf der Nanometerskala"

Zellen messen mit großer Empfindlichkeit die chemische, topographische und mechanische Beschaffenheit der Materialien, die sie umgeben und mit denen sie wechselwirken...

Goldpartikel mit Integrin

Abstand zwischen den Partikeln zwischen 40 und 70 nm

Nanoballs, nanotubes, nanorods, nanowires...

Carbon nano tube

Toxic?

Surface of alumina in conact with water

1 hydrogen bridge

2 O-H dissociation

Surface of alumina in a molecular cut-out

Crystal Structure of (Ph₂SiO)₈[Al(O)OH]₄

Another view of (Ph₂SiO)₈[Al(O)OH]₄

From simple bases and acids to amino-acids

Et₃N Me₂NH $H_2N-(CH_2)_n-NH_2$ R-OH, R-COOH $HO-(CH_2)_n-OH$ Amino-acids

Attack of N(Et)₃

Adduct of 2 NEt₃ to [(Ph₂Si)₂O₃]₄[Al(OH)]₄

Properties of AI/AI₂O₃ Composites

Biphasic Composites and their mutual arrangements

Dependance of properties on the particle sizes and geometries

Nanostructured surfaces by CVD

Prepared under different conditions

Ball-like structures

Spagetti-like sructures

Al·Al₂O₃ composite: core/shell structures

TEM picture of a "wire"

TEM picture of a "ball"

Properties of AI/AI₂O₃ Composites

Hydrophobic and Utra-Hydrophobic Properties: Dependance on the particle sizes and geometries

(Wetting-experiments with K. Jacobs, Saarbrücken)

"Normal" Hydrophobicity on our Al/Al₂O₃ Structures: Water-Droplet and Capilary

Ultra-Hydrophobicity on our Al₂O₃-Structures: Water-Droplet and Capilary

Nanostructures mimeting nature

artificial n-structutres

Lotus leaf: natural µ and n structutres

artificial $\boldsymbol{\mu}$ and n structutres

Nanowires having adjustable dimensions

Further fine structures: Nano Loops...

Al.Al₂O₃ nanoparticle self-assembly

Mimic natural surfaces

Fibroplasts on AI/Al₂O₃ nano structured surfaces

Results – CVD films (I)

\rightarrow human fibroblasts adhere on CVD films

HAlO-C-013-a (310°C, 120 min)

HAlO-C-013-a (550°C, 30 min)

Si<100>

USAAR4/1

Fibroplasts on AI/AI₂O₃ surfaces with gradient structures

Regions A and B have different scaled structures

Fibroplast on nano-wire structured surface

Detailed view of filipodias:

Comparison of glass surface (left) with Al/Al2O3 nanowires

Evolution of Al/Al₂O₃ nanowires by laser pulse

1xPulse •Nanopores •Nanowires 2xPulse •Nanopores **3xPulse** •Micropores •Nanopores 4xPulse •Micropores •Grooves

Pulsed laser transformed AI/Al₂O₃ (left 1 pulse, right 2 pulses)

DRG neurons fixed in 4% formaldehyde and immunohistochemically stained by the marker tubulin.

Control experiment: glass

Al/Al₂O₃-surface